Package: tripEstimation (via r-universe)

September 12, 2024

, ,
Type Package
Title Metropolis Sampler and Supporting Functions for Estimating Animal Movement from Archival Tags and Satellite Fixes
Version 0.0-46
Imports lattice, mgcv, reproj, sp, zoo
Description Data handling and estimation functions for animal movement estimation from archival or satellite tags. Helper functions are included for making image summaries binned by time interval from Markov Chain Monte Carlo simulations.
License GPL-3
NeedsCompilation no
ByteCompile yes
<pre>URL https://github.com/Trackage/tripEstimation</pre>
<pre>BugReports https://github.com/Trackage/tripEstimation</pre>
Repository https://trackage.r-universe.dev
RemoteUrl https://github.com/trackage/tripestimation
RemoteRef HEAD
RemoteSha 46f7a73ff270417c69fdc432759422c0c66ce2be
Contents
as.image.pimg
astro
behav.bin
bits
chain.read
elevation
get.mask
julday
metropolis
<u>.</u>

2 as.image.pimg

	mkCalibration																		13
	mkLookup																		14
	norm.proposal																		15
	old.metropolis																		16
	pick																		17
	pimg.list																		18
	satellite.model																		19
	solar																		20
	solar.model .																		21
Index																			24

as.image.pimg

Convert to image list

Description

Converts Probability image (pimage) component to standard R xyz list image.

Usage

```
as.image.pimg(pimg)
combine(pimgs, subset = 1:length(pimgs))
coords.pimg(pimg)
unzipper(px)
as.local.pimg(pimg)
## S3 method for class 'pimg'
as.matrix(x, ...)
```

Arguments

pimg	Probability image component
pimgs	pimgs
subset	subset
px	рх
X	X
	• • •

Value

```
as.image.pimg returns a image list with vectors x,y and z matrix
as.matrix.pimg returns just the local matrix populated in the parent
combine returns the collective matrix, in image xyz form
coords.pimg returns the rectilinear coordinates of the pimg parent
unzipper returns a pimg.list by combining multiple compatible ones together and resolving their
temporal order
as.local.pimg returns the pimg in local form
```

astro 3

Author(s)

Michael D. Sumner

astro

Calculations for position of the sun and moon

Description

This set of functions provides simple position calculations for the sun and moon, taken from Pascal routines published in Montenbruck and Pfleger (1994, Dunlop).

These are completely independent from the (specifically optimized) solar elevation calculations available via [elevation and solar].

Usage

```
astro(lon, lat, astro.calc)
EQUHOR(DEC, TAU, PHI)
FRAC(x)
LMST(MJDay, LAMBDA)
lunar(time)
mini.sun(time)
MJD(date)
POLAR(X, Y, Z)
```

Arguments lon

time

	_
lat	vector of latitudes
astro.calc	list object containing RA right ascension
DEC	declination
TAU	TAU
PHI	PHI
X	number
MJDay	modified julian day
LAMBDA	LAMBDA

vector of date-times in POSIXct format

vector of longitudes

4 astro

```
date vector of date-times in POSIXct format
X x-coordinate
Y y-coordinate
Z z-coordinate
```

Value

astro returns a list object with the components of the moon or sun's position,

```
r rho component
theta theta component - elevation
phi phi component - azimuth
```

Warning

Some of this could be faster (particularly the use of LMST in "astro" is not precalculated)

Note

Thanks to Nick. Ellis@csiro.au for pointing out a mistake pre-0.0-27

Author(s)

Michael D. Sumner

References

```
@BOOK{,
  title = {Astronomy on the Personal Computer},
  publisher = {Springer-Verlag, Berlin},
  year = {1994},
  author = {Oliver Montenbruck and Thomas Pfleger},
  edition = {2 (translated from German by Storm Dunlop)},
}
```

See Also

See Also elevation

Examples

```
## the moon
tm <- Sys.time() + seq(by = 3600, length = 100)
moon <- lunar(tm)
rtp <- astro(147, -42, moon)
op <- par(mfrow = c(2,1))
plot(tm, rtp$theta, main = "lunar elevation, Hobart")
plot(tm, rtp$phi, main = "lunar azimuth, Hobart")
par(op)</pre>
```

behav.bin 5

```
## the sun
tm <- Sys.time() + seq(by = 3600, length = 100)
sun <- mini.sun(tm)
rtp <- astro(147, -42, sun)
op <- par(mfrow = c(2,1))
plot(tm, rtp$theta, main = "solar elevation, Hobart")
plot(tm, rtp$phi, main = "solar azimuth, Hobart")
par(op)
  elev.gmt <- mkElevationSeg(1, tm)
  plot(tm, rtp$theta, main = "solar elevation mini.sun versus NOAA")
  lines(tm, elev.gmt(1, 147, -42))</pre>
```

behav.bin

Bin MCMC chains.

Description

Bin MCMC chains in probability image summaries.

Usage

```
behav.bin(z, pimgs, weights = NULL)
bin.pimg(pimg, xy, w = 1)
chunk.bin(filename, pimgs, weights = NULL, chunk = 2000, proj = NULL)
```

Arguments

```
z
                Z
pimgs
                pimgs
weights
                weights
pimg
                pimg
ху
                ху
                W
filename
                filename
chunk
                chunk
proj
                proj
```

Value

behav.bin returns a pimg.list

bin.pimg and chunk.bin provide work flow for behav.bin, to do the local binning and control the overal job

6 bits

bits

Set and get bits from binary masks.

Description

Utility functions to access bits from numeric values, for the efficient storage of spatial masks.

Usage

```
bits(object, bit)
bits(object, bit) <- value</pre>
```

Arguments

object a numeric value bit the desired bit

value logical value to set bit to

Details

R uses 32-bit integers, so we can (easily) access 31 binary matrices in each numeric matrix. This is very useful for storing long time-series of spatial masks, required for track-location estimation from archival tags.

Value

A numeric object with the given bit set, or a logical value designating the status of the given bit.

Note

The 32nd bit is harder to access, so we ignore it.

Author(s)

Michael D. Sumner

See Also

See Also get.mask for a higher level access of a mask object

Examples

```
a <- 1L
bits(a, 0) ## 1
bits(a, 2) <- 1
a # 5
```

chain.read 7

chain.read

Manage MCMC cache.

Description

These functions read and write to cache files for storing long MCMC outputs from model functions, such as solar.model or satellite.model.

Usage

```
chain.read(filename)
chain.dim(filename)
chain.write(filename, A, append = FALSE)
```

Arguments

filename cache file for model chain

A chain array

append append to existing file or overwrite?

Value

```
chain.read returns the actual array of MCMC samples from an archived file chain.dim reports the dimensions of the archived file chain.write writes an array of MCMC samples to an archive file
```

Author(s)

Michael D. Sumner and Simon Wotherspoon

See Also

```
pimg.list
```

elevation

Calculate elevation of astronomical objects

Description

Function to calculate elevation.

Usage

```
elevation(lon, lat, sun)
```

8 get.mask

Arguments

lon	vector of longitude values
lat	vector of latitude values

sun pre-stored values as returned by solar or lunar

Value

elevation returns a numeric vector of solar (or lunar) elevation as degrees above or below the horizone

Author(s)

Michael D. Sumner

References

```
https://gml.noaa.gov/grad/solcalc/azel.html
```

get.mask

Create, access and manipulate spatial masks

Description

Spatial masks are stored using the xyz-list structure used by image or as a series of masks stored as bits in the z-component as matrix or array object. get.mask is used to extract a specific mask from the binary storage, and mkSmall can be used to quickly down-sample an existing mask or image.

Usage

```
get.mask(masks, k)
mkSmall(lst, thin = 10)
set.mask(object, segment) <- value
mkMaskObject(xs, ys, nsegs)</pre>
```

Arguments

	masks	A list object with components x, y, and z containing spatial masks
--	-------	--

k specifies the k-th mask

1st an xyz-list structure with z containing either a matrix or array

thin integer factor to down-sample grid

object array Mask object

get.mask 9

segment	segment number to be modified in the mask
value	individual mask to be set
XS	x coordinates of mask cells
ys	y coordinates of mask cells
nsegs	number of segments to be represented

Value

matrix of type logical

Author(s)

Michael D. Sumner

See Also

mkLookup for the use of these masks to query individual locations and locations measured over time. See bits for the underlying mechanism to set and get mask bits.

For the use of the xyz-list structure see image.

Examples

10 initialize.x

initialize.x

Diagnose and initialize light level estimation.

Description

Primarily for the purposes of initializing the estimation, these functions can also be used for diagnostic purposes. position.logp produces grids of simplistic position likelihood for each twilight and uses those to initialize positions for running estimations.

Usage

```
position.logp(model, x1, x2, xrest = NULL, subset = 1:model$n,
initialize.x = TRUE, start = NULL, end = NULL, prob = 0.8, winoffset = 5)
initialize.x(model, x1, x2, xrest = NULL)
light.quantile(model, chain, day, seg, probl = c(0.025, 0.5, 0.975))
show.segment(model, chain, segment, day, light, k, n = 50, ...)
```

Arguments

model	estimation model object
x1	vector of x-coordinates defining the prior grid
x2	vector of y-coordinates defining the prior grid
xrest	value for remaining parameters - default is light attenuation
subset	evaluate subset of segments - default uses all
initialize.x	logical - create initial points for x?
prob	probability - threshold to apply to overlapping quantiles, defaults to 0.8
winoffset	an odd-numbered window size to use when intersecting subsequent segments - defaults to 5
chain	chain object from estimation
day	POSIXct vector of date-times
seg	desired segment
probl	probability level for quantile
start	known position of release
end	known position of recapture
segment	vector of segment data
light	vector of light data
k	desired segment to show
n	length of vector to evaluate
	additional arguments to be passed to plot

julday 11

Details

The primary function here is position.logp, for initializing the estimation for solar.model and metropolis0.

Value

initialize.x returns a matrix with 3 columns, lon,lat,attenuation position.logp returns a list with model running components show.segment is used for its side effect, a plot of light level for a twilight segment light.quantile returns a numeric vector

Author(s)

Michael D. Sumner

julday

Julian day and Julian century calculations from date-time values

Description

Date values required by solar.

Usage

```
julday(tm)
julcent(time)
```

Arguments

tm vector of date-times
time vector of date-times

Value

return numeric values

Author(s)

Michael D. Sumner

References

https://gml.noaa.gov/grad/solcalc/azel.html

12 metropolis

metropolis	Metropolis-Hastings sampler for location estimation for archival and satellite tag
iiic ti opo115	

Description

These functions provide a direct implementation of the Metropolis-Hastings algorithm, for calculating marginal posterior (locations and full-track estimates) properties using Markov Chain Monte Carlo. The sampler is written completely in R, vectorized to be as fast as possible. The sampler can include likelihood functions for large data records (including light and water temperature), as well as *mask* functions for simpler rejection sources. Behavioural constraints are implemented using a red/black update, so that location estimates *X* and *Z* may be estimated in an efficient manner. The parameter estimates may be cached and later queried arbitrarily.

Usage

```
metropolis(model, iters = 1000, thin = 10, start.x = NULL, start.z = NULL)
metropolis0(model, iters = 1000, thin = 10, start.x = NULL, start.z = NULL)
```

Arguments

model	model for estimation, such as one created by solar.model
iters	number of iterations to run
thin	number of iterations to thin by
start.x	starting points for the primary locations
start.z	starting points for the intermediate locations (midpoints between the start.x points is a good first guess

Details

metropolis0 is a slightly different version of metropolis that enables an initialization step, required to find parameter estimates that are consistent with any masks used. It is difficult to make this step more elegant, and so we live with the two versions.

In terms of the estimates, X's have m records with n parameters, where m is the number of data records in time (twilights for archival tags, Argos estimates for satellite tags) and n is at least x-coordinate, y-coordinate and maybe k-attenuation for light. Z's have m-1 records with 2 parameters for 'x' and 'y' (which are usually Longitude and Latitude). These parameters may be increased or changed, they are tied only to the likelihood functions used, not the sampler itself. Also, coordinate transformations may be used inside the model and likelihood functions, in order to use an appropriate map projection. Solar calculations rely on lon/lat and so this step does slow down light level geo-location.

mkCalibration 13

Value

A MCM Chain stored as a list containing

model	The model object used by the sampler
X	The last iters X -samples accepted, stored as an $c(m, n, iters)$ array
Z	The last iters Z-samples accepted, stored as an c(m - 1, 2, iters)
last.x	The last accepted X-sample, stored as a c(m, n) matrix
last.z	The last accepted Z-sample, stored as a c(m, 2) matrix

Author(s)

Michael D. Sumner and Simon Wotherspoon

References

Sumner, Wotherspoon and Hindell (2009). Bayesian Estimation of Animal Movement from Archival and Satellite Tags, PLoS ONE. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0007324

See Also

```
solar.model, satellite.model
```

mkCalibration	Create calibration of solar elevation to measured light level.

Description

Using a set of light level data from a known location create a calibration function to return the expected light level given solar elevation.

Usage

```
mkCalibration(x, known = NULL, elim = c(-36, 12), choose = TRUE)
```

Arguments

Χ	a data frame containing at least gmt and light
known	a known position - as a 2-element c(x, y) coordinate
elim	a 2-element vector of the range of solar elevation to define
choose	logical - choose segments from a plot or use all the data?

Details

It is assumed that the data frame x has columns "gmt" with POSIXct date-times and "light" with numeric light level data.

14 mkLookup

Value

A function, defined by approxfun.

Author(s)

Michael D. Sumner

See Also

approxfun

mkLookup

Create a lookup function to query locations against spatial masks

Description

Simple pixel spacing is used to overlay point locations on a spatial grid, or a series of grids.

Usage

```
mkLookup(x, by.segment = TRUE)
```

Arguments

x an xyz-list with matrix or array of masks

by . segment logical - is the mask to be queried separately for each time step?

Value

A function, with one argument - a matrix of points - that returns a logical vector indicating the overlay of each point against the masks.

Note

Very little error checking is done.

Author(s)

Michael D. Sumner

See Also

get.mask and related examples for creating and using masks.

See over for more general capabilities for overlays.

norm.proposal 15

					-
n	nri	m r	rr	nn	sal

Manage proposal functions tune variance for metropolis sampler

Description

Generate new proposals for the x from the current. Generates all x at once.

Usage

```
norm.proposal(m, n, sigma)
mvnorm.proposal(m, n, Sigma)
bmvnorm.proposal(m, n, Sigma)
```

Arguments

n number of recordsn number of parameters

sigma variance Sigma variance

Details

norm.proposal - Independent Normal proposal - every component is independent, with variances of individual components determined by sigma. The recycling rule applies to sigma, so sigma may be a scalar, an m vector or a m by n matrix.

mvnorm.proposal - Multivariate Normal proposal - all components of all points are correlated. In this case Sigma is the joint covariance of the m*n components of the proposal points.

bmvnorm.proposal - Block Multivariate Normal proposal - components of points are correlated, but points are independent. Here Sigma is an array of m covariance matrices that determine the covariance of the m proposal points.

Value

An list object with get, set and tune functions to manage the state of the proposals.

proposal propose new set of parameters from last

get get variance values set set variance values

tune tune the variance for proposal functions

Author(s)

Simon Wotherspoon

old.metropolis

old.metropolis

Older versions of solar location estimation

Description

Some deprecated functions, originally used purely for light level estimation before the sampling algorithm was generalized for satellite models as well.

Usage

```
mkElevationSeg(segments, day)
mkNLPosterior(segments, day, light, calib)
old.dist.gc(x1, x2 = NULL)
old.find.init(mask, nseg, nlpost, pars = c("Lon", "Lat", "k"))
old.metropolis(nlpost, lookup, p0, cov0, start, end, iter = 1000, step = 100)
old.mkLookup(x, binArray = TRUE)
k.prior(seg, ps)
```

Arguments

iter

segments	vector identifying the segment of each time and light value
day	date-time values in POSIXct
light	vector of light data
calib	calibration function for light levels
x1	matrix of track locations
x2	matrix of track locations (optional second part)
mask	image object of masked areas
nseg	number of (twilight) segments
nlpost	negative log posterior function
pars	names of parameters
lookup	lookup function for masked areas
p0	initial locations for sampler
cov0	covariance matrix for sampler
start	known start parameters
end	known end parameters

number of iterations

pick 17

	1 (.1		• •
step	number of th	inning iterations	neriter
3100	mumber of th	mining noranom	, per reci

x image-like object of matrix or array of binary masks

binArray logical: are the masks compressed into bits?

seg segment

ps light attenuation value

Details

These functions are included for legacy purposes, this was the original implementation.

Value

```
If it is a LIST, use
```

Author(s)

Michael D. Sumner

See Also

Please use the more up to date function metropolis, with the models such as solar.model or satellite.model.

pick

Choose twilight segments interactively from light data.

Description

pick plots up series of light data agains record ID, allowing the user to click on the beginnings and ends of twilight in sequence. picksegs generates a vector of segment IDs for each record.

Usage

```
pick(id, val, nsee = 10000)
picksegs(twind, n)
```

Arguments

1 4	inday	Montor to	a idantity	racorde
id	HIUCX	VECTOL II	o identify	records

val sequence of data (light levels) to choose segments from

nsee number of points to plot per screen
twind vector of index pairs generated by pick

n Number of segments values required - length of record

18 pimg.list

Value

pick returns a vector where each value (obtained using locator is the x coordinate for the begin or end of a twilight.

picksegs uses these paired indexes to return a vector of segment IDs, with NAs for non-twilight periods.

Warning

Segments are expected to be chosen as non-overlapping.

Note

It seems best to choose more of the light data than less, using the ekstrom keyword to solar.model we can limit the solar elevation used.

Author(s)

Michael D. Sumner

Examples

```
d <- sin(seq(0, 10, by = 0.01))
id <- 1:length(d)
## choose a series of start-begin pairs
if (interactive()) {
pk <- pick(id, d, 1000)
## your start/ends should be marked as blue versus red
plot(id, d, col = c("red", "blue")[is.na(picksegs(pk, 1000))+1])
}</pre>
```

pimg.list

Create a collection of probability images, for MCMC binning.

Description

Pimage lists.

Usage

```
pimg(xmin, xmax, xn, ymin, ymax, yn)
pimg.list(times, xlim, ylim, img.dim, Z = TRUE)
```

satellite.model 19

Arguments

xmin	xmin
xmax	xmax
xn	xn
ymin	ymin
ymax	ymax
yn	yn
times	times
xlim	xlim
ylim	ylim
img.dim	img.dim
Z	Z

Value

returns a Pimage list

satellite.model	Function to create a satellite model object for metropolis location
	sampler

Description

A model to manage likelihood functions, environmental masks and behavioural likelihood functions for pre-derived satellite locations. There are some options for configuration, but this may be considered a template for any given model. The model *function* exists simply to make the object construction simple.

Arguments

day	vector of date-times for each light level
Χ	matrix of pre-derived satellite locations
proposal.x	function from object managing X proposals
proposal.z	function from object managing Z proposals
mask.x	lookup function for X's against masks
mask.z	lookup function for Z's against masks
fix.release	logical - is the release point known?
fix.recapture	logical - is the recapture point known?
start.x	starting positions for the primary locations, see position.logp
start.z	starting positions for the intermediat locations.

20 solar

posn.sigma	variance for locations
behav.dist	distribution to use for behavioural constraint
behav.mean	mean to use for behavioural distribution
behav.sd	variance for behavioural distribution
proj.string	PROJ.4 string for coordinate system used

Details

posn.sigma may be a single value for all estimates, or a vector of values for each position estimate.

Transformation of coordinates is supported via a simple function that only performs coordinate transforms if proj.string is not longlat.

Value

See solar.model for some related detail.

Note

These are simple wrapper functions to create the desired model for use in metropolis. These models are structurally very simple and may be easily edited as required.

Author(s)

Michael D. Sumner

References

Sumner, Wotherspoon and Hindell (2009). Bayesian Estimation of Animal Movement from Archival and Satellite Tags, PLoS ONE. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0007324

See Also

See also solar.model for the counterpart model for estimating positions for light tags.

solar Calculate solar postion parameters
--

Description

Pre-calculates astronomical solar position components for Earth-location sampling functions.

Usage

solar(day)

solar.model 21

Arguments

day vector of date-time values

Value

A list of the following values for each input time:

solarTime solar time

sinSolarDec sine solar declination cosSolarDec cosine solar declination

Note

No account is made for horizon refraction, but this was available in the original (Javascript) code.

Author(s)

Michael D. Sumner

References

```
https://gml.noaa.gov/grad/solcalc/azel.html
```

solar.model

Function to create a solar model object for metropolis location sampler

Description

A solar model to manage likelihood functions, environmental masks and behavioural likelihood functions. There are several options for configuring the model, and this may be considered a template for any given model. The model *function* exists simply to make the object construction simple.

Usage

22 solar.model

Arguments

segments vector identifying twilight segment
day vector of date-times for each light level

light vector of light levels

proposal.x function from object managing X proposals proposal.z function from object managing Z proposals mask.x lookup function for X's against masks lookup function for Z's against masks fix.release logical - is the release point known?

fix.recapture logical - is the recapture point known?

calibration calibration function for predicted light level for solar elevation

light.sigma variance for light data

k.sigma variance for light attenuation

behav model distributions to be used for behaviour - defaults to "speed"

behav.dist distribution to be used for behaviour
behav.mean mean for behavioural distribution
behav.sd variance for behavioural distribution

PROI 4 string for coordinate system us

proj.string PROJ.4 string for coordinate system used

ekstrom parameters to use for ekstrom limit - min elevation, max elevation, sigma for

outside that range

ekstrom.limit mode of ekstrom limit to impose - defaults to "light"

Details

The vectors of segments, day and light are expected to be of the same length.

Fixed recapture and release points are treated specially for ease of sampling, but the sampling is written to be general for any fixed locations.

Behavioural models may be specified either as lognormal or log-gamma. By editing the function created as logp.behavioural this may be specified differently.

Transformation of coordinates is supported via a simple function that only performs coordinate transforms if proj.string is not longlat.

Value

proposal.x(x) - generates new proposals for the x from the current x. Generates all x at once.

proposal.z(z) - generates new proposals for the x from the current z. Generates all z at once.

mask.x(x) - mask function for the x. Simultaneously tests all x and returns a vector of booleans indicating which are acceptable.

mask.z(z) - mask function for the z. Simultaneously tests all z and returns a vector of booleans indicating which are acceptable.

solar.model 23

logp.position(x) - Given the set of x, returns a vector that gives the contribution each x make to the log posterior based on position alone.

logp.behavourial(k,xa,z,xb) - Computes the contribution to the log posterior from the behavioural model on a subset of segments that make up the path. Here k is a vector of the segment numbers, where the segments pass from xa to z to xb, and the function returns the contribution to the log posterior from each segment. This is the only function expected to work with only a subset of the x and z.

start.x - suggested starting points for the x

start.z - suggested starting points for the z

The only function that must operate on a subset of the x/z is logp.behavourial. All the other functions operate on all x or z simultaneously, simplifying the implementation for the user.

Note that x can consist of several parameters, not just the locations, but we assume the first two components of each x specify the location. For example, in the light level models each x is (lon, lat, k) where k is the attenuation of the light level.

Some details of this implementation are not as nice as they could be. First, it would be better if did not calculate the contributions to the posterior for points the mask rejects. Also, it may be better to separate the specification of the functions that generate proposals from the other functions, so that we can tune the proposal distributions without re-generating the whole model specification.

Author(s)

Simon Wotherspoon and Michael Sumner

Index

* dplot	chain.read,7
initialize.x, 10	chain.write(chain.read),7
mkCalibration, 13	chunk.bin(behav.bin),5
pick, 17	<pre>combine (as.image.pimg), 2</pre>
* manip	<pre>coords.pimg (as.image.pimg), 2</pre>
as.image.pimg, 2	
astro, 3	elevation, 4, 7
behav.bin, 5	EQUHOR (astro), 3
bits, 6	
chain.read, 7	FRAC (astro), 3
elevation, 7	
get.mask,8	get.mask, 6 , 8 , 14
initialize.x, 10	
julday, 11	image, 8, 9
metropolis, 12	initialize.x, 10
mkCalibration, 13	:
mkLookup, 14	julcent (julday), 11
norm.proposal, 15	julday, 11
pick, 17	k.prior(old.metropolis), 16
pimg.list, 18	K.pi 101 (010.met/op0113), 10
satellite.model, 19	light.quantile(initialize.x), 10
solar, 20	LMST (astro), 3
* misc	locator, 18
old.metropolis, 16	lunar, 8
* models	lunar (astro), 3
solar.model, 21	Tuna. (45 th 5), 5
,	metropolis, <i>12</i> , <i>12</i> , <i>17</i> , <i>20</i>
approxfun, 14	metropolis0, <i>11</i> , <i>12</i>
as.image.pimg, 2	metropolis0 (metropolis), 12
as.local.pimg(as.image.pimg), 2	mini.sun(astro),3
as.matrix.pimg(as.image.pimg), 2	MJD (astro), 3
astro, 3	mkCalibration, 13
,	mkElevationSeg (old.metropolis), 16
behav.bin, 5	mkLookup, 9, 14
bin.pimg (behav.bin), 5	mkMaskObject(get.mask),8
bits, 6, 9	mkNLPosterior(old.metropolis), 16
bits<- (bits), 6	mkSmall (get.mask), 8
bmvnorm.proposal (norm.proposal), 15	mvnorm.proposal (norm.proposal), 15
chain.dim(chain.read),7	norm.proposal, 15

INDEX 25

```
old.dist.gc(old.metropolis), 16
old.find.init(old.metropolis), 16
old.metropolis, 16
old.mkLookup(old.metropolis), 16
over, 14
pick, 17
picksegs (pick), 17
pimg (pimg.list), 18
pimg.list, 18
POLAR (astro), 3
position.logp, 19
position.logp(initialize.x), 10
satellite.model, 7, 13, 17, 19
set.mask < - (get.mask), 8
show.segment(initialize.x), 10
solar, 8, 11, 20
solar.model, 7, 11-13, 17, 18, 20, 21
unzipper(as.image.pimg), 2
```